Central Tendency and Dispersion Measures
Enter the actual and predicted values to calculate Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE).
See how the MSE Calculator works with real-world data.
A simple example with 5 data points to check model prediction accuracy.
Actual: 2, 4, 5, 4, 5
Predicted: 2.5, 3.5, 4.0, 5.0, 4.5
Evaluating a model that predicts daily stock prices.
Actual: 150.5, 152.0, 151.8, 153.2, 155.0
Predicted: 151.0, 151.5, 152.2, 153.0, 154.5
An ideal scenario where predicted values perfectly match actual values, resulting in zero error.
Actual: 10, 20, 30, 40, 50
Predicted: 10, 20, 30, 40, 50
An example demonstrating a model with high error margins.
Actual: 100, 200, 300, 400, 500
Predicted: 150, 180, 350, 380, 550
1.5, 2.8, 3.2, 4.0
.1.7, 2.5, 3.5, 3.9
.